Article | September 27, 2022

5G NR And LTE Latency Analysis In A Public Network (Part 1)

Rohde - 5G NR And LTE Latency Analysis In A Public Network (Part 1)

The well-known 5G requirements triangle includes the ultra-reliable, low latency (URLLC) use case, generally associated with automotive and industrial applications. The question remains whether real-life networks deployed today do perform (mainly in terms of latency and reliability/availability of data services) as intended by 3GPP based on its simulated performance results. Globally, 5G NR networks are widely deployed, mostly based on the 5G non-standalone (NSA) architecture. In private campus network deployments, we note a strong desire for and partial realization of 5G standalone (SA) architectures.

This article contains measurement results for both one-way latency (OWL) and round trip time (RTT) delays in a commercially deployed public 5G NSA network. Results were obtained using the commercially available interactivity test based on the QualiPoc Android solution for RTT from Rohde & Schwarz. For OWL, we used a prototype solution with GPS resources connected at the transmitting and receiving ends, again based on Qualipoc Android. The solution enables various data rates of 100 kbps, 1 Mbps and 15 Mbps. As expected, we observed superior 5G NR performance compared to LTE, although most of the improvements are in the cellular uplink (UL) direction. Best case 5G NR measurements revealed less than 7 ms OWL in DL for a 100 kbps service. Worst case 5G NR measurements showed around 18 ms OWL in UL for a 15 Mbps service.

access the Article!

Get unlimited access to:

Trend and Thought Leadership Articles
Case Studies & White Papers
Extensive Product Database
Members-Only Premium Content
Welcome Back! Please Log In to Continue. X

Enter your credentials below to log in. Not yet a member of RF Globalnet? Subscribe today.

Subscribe to RF Globalnet X

Please enter your email address and create a password to access the full content, Or log in to your account to continue.

or

Subscribe to RF Globalnet

Rohde & Schwarz GmbH & Co. KG