Article | May 29, 2013

Patterned Ground Shields For Silicon RFICs – Part 2: What Universe Are We In?

Source: Sonnet Software

By James C. Rautio

Reflections_bucket-logo_450x300

In Part I, we used Sonnet® to investigate the current in the surface of the silicon substrate that is induced by a spiral inductor. Since it is an inductor, we were expecting the substrate current to be induced magnetically. After all, inductors are just little magnets, and we would expect inductively induced current in any nearby conductor. The silicon substrate is a conductor, kind of, right? In addition, the magnetically induced current should flow parallel to (and in the opposite direction of) the current in the spiral inductor. This behavior obeys a special case of Clerk Maxwell’s equations known as Lenz’s Law. This is all, to use American slang, a “slam-dunk”1, hardly even worth checking.

VIEW THE ARTICLE!
Signing up provides unlimited access to:
Signing up provides unlimited access to:
  • Trend and Leadership Articles
  • Case Studies
  • Extensive Product Database
  • Premium Content
HELLO. PLEASE LOG IN. X

Not yet a member of RF Globalnet? Register today.

ACCOUNT SIGN UP X
Please fill in your account details
Login Information
ACCOUNT SIGN UP

Subscriptions

Sign up for the newsletter that brings you the industry's latest news, technologies, trends and products.

You might also want to: