Article | July 25, 2012

Analyzing Frequency Response Of Inertial MEMS In Stabilization Systems

Source: Analog Devices

By Mark Looney

Introduction to Stabilization Systems
UAV-mounted surveillance equipment, maritime microwave receivers, vehicle-mounted infrared imaging sensors, and similar instrument systems require stable platforms for best performance, but they are often used in applications that experience vibration and other undesirable kinds of motion. Vibration and normal vehicular movements cause communication loss, blurry images, and many other behaviors that degrade the instrument’s performance and ability to perform its desired function. Platform stabilization systems employ closed-loop control systems to actively cancel this type of motion, thus preserving mission-critical performance objectives for these instruments.

Since many stabilization systems require more than one axis of active correction, inertial measurement units (IMUs) often include at least three axes of gyroscopes (measuring angular velocity) and three axes of accelerometers (measuring acceleration and angular orientation) to provide the feedback sensing function. The ultimate goal of the feedback sensor is to provide accurate measurements of the platform’s orientation, even when it is in motion. Since there is no “perfect” sensor technology that can provide accurate angle measurements under all conditions, the IMUs in platform stabilization systems often employ two or three sensor types on each axis.

Copyright Analog Devices, Inc.
Posted with permission from Analog Devices, Inc.
Original publication: Analog Dialogue, Volume 46, Number 3, 2012

access the Article!

Get unlimited access to:

Trend and Thought Leadership Articles
Case Studies & White Papers
Extensive Product Database
Members-Only Premium Content
Welcome Back! Please Log In to Continue. X

Enter your credentials below to log in. Not yet a member of RF Globalnet? Subscribe today.

Subscribe to RF Globalnet X

Please enter your email address and create a password to access the full content, Or log in to your account to continue.

or

Subscribe to RF Globalnet